Automatic Category Label Coarsening for Syntax-Based Machine Translation
نویسندگان
چکیده
We consider SCFG-basedMT systems that get syntactic category labels from parsing both the source and target sides of parallel training data. The resulting joint nonterminals often lead to needlessly large label sets that are not optimized for an MT scenario. This paper presents a method of iteratively coarsening a label set for a particular language pair and training corpus. We apply this label collapsing on Chinese–English and French–English grammars, obtaining test-set improvements of up to 2.8 BLEU, 5.2 TER, and 0.9 METEOR on Chinese–English translation. An analysis of label collapsing’s effect on the grammar and the decoding process is also given.
منابع مشابه
Improving Syntax-Augmented Machine Translation by Coarsening the Label Set
We present a new variant of the SyntaxAugmented Machine Translation (SAMT) formalism with a category-coarsening algorithm originally developed for tree-to-tree grammars. We induce bilingual labels into the SAMT grammar, use them for category coarsening, then project back to monolingual labeling as in standard SAMT. The result is a “collapsed” grammar with the same expressive power and format as...
متن کاملAutomatically Improved Category Labels for Syntax-Based Statistical Machine Translation
A common modeling choice in syntax-based statistical machine translation is the use of synchronous context-free grammars, or SCFGs. When training a translation model in a supervised setting, an SCFG is extracted from parallel text that has been statistically word-aligned and parsed by monolingual statistical parsers. However, the set of syntactic category labels used in a monolingual statistica...
متن کاملمدل ترجمه عبارت-مرزی با استفاده از برچسبهای کمعمق نحوی
Phrase-boundary model for statistical machine translation labels the rules with classes of boundary words on the target side phrases of training corpus. In this paper, we extend the phrase-boundary model using shallow syntactic labels including POS tags and chunk labels. With the priority of chunk labels, the proposed model names non-terminals with shallow syntactic labels on the boundaries of ...
متن کاملThe Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کاملA new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011